85 research outputs found

    Count-Based Exploration with the Successor Representation

    Full text link
    In this paper we introduce a simple approach for exploration in reinforcement learning (RL) that allows us to develop theoretically justified algorithms in the tabular case but that is also extendable to settings where function approximation is required. Our approach is based on the successor representation (SR), which was originally introduced as a representation defining state generalization by the similarity of successor states. Here we show that the norm of the SR, while it is being learned, can be used as a reward bonus to incentivize exploration. In order to better understand this transient behavior of the norm of the SR we introduce the substochastic successor representation (SSR) and we show that it implicitly counts the number of times each state (or feature) has been observed. We use this result to introduce an algorithm that performs as well as some theoretically sample-efficient approaches. Finally, we extend these ideas to a deep RL algorithm and show that it achieves state-of-the-art performance in Atari 2600 games when in a low sample-complexity regime.Comment: This paper appears in the Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020

    Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift

    Full text link
    In this paper we revisit the method of off-policy corrections for reinforcement learning (COP-TD) pioneered by Hallak et al. (2017). Under this method, online updates to the value function are reweighted to avoid divergence issues typical of off-policy learning. While Hallak et al.'s solution is appealing, it cannot easily be transferred to nonlinear function approximation. First, it requires a projection step onto the probability simplex; second, even though the operator describing the expected behavior of the off-policy learning algorithm is convergent, it is not known to be a contraction mapping, and hence, may be more unstable in practice. We address these two issues by introducing a discount factor into COP-TD. We analyze the behavior of discounted COP-TD and find it better behaved from a theoretical perspective. We also propose an alternative soft normalization penalty that can be minimized online and obviates the need for an explicit projection step. We complement our analysis with an empirical evaluation of the two techniques in an off-policy setting on the game Pong from the Atari domain where we find discounted COP-TD to be better behaved in practice than the soft normalization penalty. Finally, we perform a more extensive evaluation of discounted COP-TD in 5 games of the Atari domain, where we find performance gains for our approach.Comment: AAAI 201

    Increasing the Action Gap: New Operators for Reinforcement Learning

    Full text link
    This paper introduces new optimality-preserving operators on Q-functions. We first describe an operator for tabular representations, the consistent Bellman operator, which incorporates a notion of local policy consistency. We show that this local consistency leads to an increase in the action gap at each state; increasing this gap, we argue, mitigates the undesirable effects of approximation and estimation errors on the induced greedy policies. This operator can also be applied to discretized continuous space and time problems, and we provide empirical results evidencing superior performance in this context. Extending the idea of a locally consistent operator, we then derive sufficient conditions for an operator to preserve optimality, leading to a family of operators which includes our consistent Bellman operator. As corollaries we provide a proof of optimality for Baird's advantage learning algorithm and derive other gap-increasing operators with interesting properties. We conclude with an empirical study on 60 Atari 2600 games illustrating the strong potential of these new operators
    • …
    corecore